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The authors describe the calculation of the external heat transfer in the 
furnaces of tubular ovens of box type, based on numerical solution of systems 
of integro-differential equations of radiative gasdynamics using the K-E tur- 
bulance model and an empirical combustion model. Radiative heat transfer is 
considered in the S 2 approximation of the method of discrete ordinates, and 
the SIMPLE algorithm~is used to solve the gasdynamic part of the problem~ 
The influence of furnace width on the external heat transfer was investigated 
numerically. 

Introduction. Tubular ovens are widely used in the oil-gas and oil technology industry. 
The main item most affecting the efficiency and reliability of operation of the tubular 
furnace is the radiant (furnace) chamber. In the furnace chamber of a tubular oven a number 
of interconnected physical and chemical processes occur: radiative and convective heat 
transfer, turbulent flow of combustion products, and combustion of fuel. Here an appreciable 
role is played by the location of the burner and the method of removing the combustion 
products from the furnace, by the circulation of combustion products, by the nature of 
the heat release in the jet volume, by the selectivity of the radiation, and by the other 
regime and structural parameters of the furnace. 

At present the most developed method for thermal computation of furnaces is the zonal 
method [i, 2]. However, the difficulties arising when one matches the zonal approach to 
radiant heat transfer with a finite difference method'of solving the equations of gasdynamics 
limit substantially the region of application of zonal computing methods. One direction 
where there has been improvement in methods of thermal design of furnace chambers is the 
development of differential methods, based on numerical solution of the system of integro- 
differential equations of radiative gasdynamics, and models of turbulence and combustion. 

Mathematical Model. The tubular oven considered in this work, with a furnace of rec- 
tangular section, is characterized by a small width of radiant section compared with the 
length and height, and a symmetric location of the tubular screen and the series of burn- 
ers (Fig. i). In such furnaces the variation of flow parameters along the length is much 
less than it is over the width and height. Therefore, the problem of heat transfer and 
flow of combustion products may be examined in the two-dimensional formulation. Here the 
tubular screen is replaced by a light-sensitive surface, nontransparent to radiation, with 
an effective emissivity depending on the outer diameter, the emissivity of the tubes, and 
the pitch between them [3]. Because of the small diameter of the tubes compared with the 
size of the furnace chamber and the small pitch between the tubes, the tubular screen may 
be considered as a solid wall, which also simplifies the solution to the gasdynam~c problem. 

The radiant heat transfer is described using the method of discrete ordinates, accord- 
ing to which the radiative transfer equation is approximated by a system of differential 
equations for the radiative intensity along a specific number of chosen directions: 

+ - + - -  ~ w ~ , ] ~ , .  ( 1 )  

E a c h  d i r e c t i o n  i s  a s s i g n e d  t h e  a n g u l a r  c o o r d i n a t e s  {~m, ~m; m = i ,  No} , w h e r e  m i s  t h e  
n u m b e r  o f  c h o s e n  d i r e c t i o n s .  
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Fig. i. Simplified model of a furnace and 
the coordinate system: I is the tubular 
screen. 

The uniqueness condition for Eq. (i) at x = 0 for a diffusely radiating and reflecting 
wall is approximated as follows: 

~h No 
i ~ =  8 - - -  j" s~  (~, r~,) d~. + ~ ]~ ~,,,, I~.,. I ?m' (2) 

A~fi n m ' = l  

f o r  v a l u e s  ~m' < 0 and ~m > 0. At t h e  o t h e r  b o u n d a r i e s  t h e r e  a r e  u n i q u e n e s s  c o n d i t i o n s  
a n a l o g o u s  t o  Eq. ( 2 ) .  Our s e t  o f  v a l u e s  {~m, ~m; m = 1, No} and w e i g h t  f a c t o r s  w m were  
b o r r o w e d  f rom [ 4 ] .  

The local value of divergence of the radiative heat flux is computed from the formula 

Ns zk No wmlmA~h ] div qv = ~ a,.h [ ~ J~b( ~,, T)d%-- ~ k , 
k = l  ~'h-1 m = l  

and the components of the vectorial radiative heat flux density integrated over the spectrum 
qp are determined from the formulas 

Ns No Ns No 
q~ = ,~  AZ h ,~  ~t.mr~,mlkm ; qUp= ~ A~h ~ ~mwmlh~. 

h = l  m = l  k = l  m : l  

The t e m p e r a t u r e  f i e l d  r e q u i r e d  t o  s o l v e  Eq. (1 )  i s  d e t e r m i n e d  by s o l v i n g  t h e  e n e r g y  
c o n s e r v a t i o n  e q u a t i o n  

~xOT cpov OT 0 [ OT ] OT I ~," OT j 
+ -- -- ~ + z~l + , t~.+ + s p ~) tt 

0y 0x oY ~ L (3) 
q- Q - -  div %. 

I t  i s  p o s t u l a t e d  t h a t  t h e  vo lume  d e n s i t y  o f  h e a t  r e l e a s e d  O v a r i e s  o n l y  a l o n g  t h e  f l a m e .  
Then t h e  amount  o f  h e a t  Qx-2 ,  r e l e a s e d  b e t w e e n  two s e c t i o n s  o f  t h e  f l a m e  x = x z and x = 
x i ( x  2 > x l ) ,  can  be  e v a l u a t e d  f r o m  t h e  f o r m u l a  

QI-~ = BTQp~[~ (x,) - -  ~ (x:l)]. ( 4 )  

The i n t e g r a l  d e g r e e  o f  c o m b u s t i o n  o f  f u e l  a l o n g  t h e  f l a m e  i s  g i v e n  by t h e  e m p i r i c a l  d e p e n -  

d e n c e  [5] 
~l(X)= 1 - - e x p  - - a  ~ . ( 5 )  

The v e l o c i t y  f i e l d  and t h e  c o e f f i c i e n t s  o f  t u r b u l e n t  t r a n s f e r  were  d e t e r m i n e d  by s o l v i n g  
t h e  t i m e - a v e r a g e d  N a v i e r - S t o k e s  e q u a t i o n s ,  t h e  c o n t i n u i t y  e q u a t i o n ,  and t h e  e q u a t i o n  o f  
t h e  K-E t u r b u l e n c e  m o d e l ,  wh ich  can  be  combined  f o r m a l l y  i n t o  t h e  one g e n e r a l  e q u a t i o n  

O(pucIo) + O(pvqo) .._O__ { F 0~ ) 0 ( -ff-j) --l-Sf, (6 )  
0x 0y 0~ k f' 0~) + ~  rf 0| 

where  t h e  g e n e r a l  v a r i a b l e  ~ = ( u ,  v ,  1, k ,  s ) ,  and s  and S f  a r e  d e t e r m i n e d  f r o m  T a b l e  

1. 
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TABLE I. Expressions for Ff, Sf in the generalized 

Eq. (6) .  
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Note: 6 = . T { 2 [ ( O u l  2 / av ~2] (Ou or \2  
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The f u r n a c e  chambers of  t u b u l a r  ovens o p e r a t e  a t  r e l a t i v e l y  low p r e s s u r e s  (on the  o rde r  
of  1 atm) and h igh t e m p e r a t u r e s  (1200-1800 K), and t h e r e f o r e  t he  s t a t e  of  t he  chimney gases  
can be d e s c r i b e d  in t he  i d e a l  gas approximat ion  

P = pR~T. (7) 

The turbulent viscosity and the coefficient of turbulent heat transfer are computed 
from the formulas 

k2 

s Pr~ (8) 

where the function fD1 accounts for the influence of the turbulent Reynolds number Re T on 
DT near the wall: 

f.1 --exp [ a~ ] 
1 -~a~Re T j ' 

The empirical constants in the turbulence model, following [6], were assumed to be: C D = 
0.09; C~i = 1.44; Ce2 = 1.92; o E = 1.3; Pr T = 0.9; a3 = 2.5; a4 = 0.02. 

To uniquely determine the solution of the system of equations (3) and (6) one must 
add the appropriate boundary conditions. The flow parameters at the entrance section are 
given, and therefore there a boundary condition of the first kind is applied. The kinetic 
energy and the turbulent dissipation at the chamber entrance are determined from the rela- 
tions [7] 

C o. 75tfl,5 
jt 0 

ko----1,5a~Tu; eo-- 0,1D 

At the exit section we use the method of "one-sided" coordinates [8], allowing us to close 
the original differential equations. On the heater surface the temperature of the external 
wall of the radiant tubes is given. The claque temperature is determined by solving the 
heat balance equation representing the resultant radiative heat fluxes, the convective heat 
fluxes and the thermal losses through the claque: 

T . . - -  T~ = [(%n)]~ - -  ~ [(nv) T]~. (9) 
Rf  

The boundary conditions for the longitudinal velocity, temperature and the characteristics 
of turbulence at the solid boundary are approximated by using the method of wall functions 
[6], according to which the diffusive flux of kinetic energy of turbulence through a solid 

239 



boundary is assumed to be zero, and its rate of dissipation at a point P, located at distance 
Yr from the boundary, is given by the formula 

8p = C~kp , 
• 

where K 2 = 0.19 is an empirical constant, and the point P is chosen from the condition 

30 < yr + < i00. The shear stress at the wall is computed from the formula 

~C~ ,~s k~,S uv 

% -- In (ey$)  ' 

which is also used in the finite-difference approximation of the diffusion terms in the 
Navier-Stokes equation at the wall. The temperature gradient at the wall is determined 
from the formula 

= P r  
Yv Fp 

where the function F r, following the recommendation of [6], is taken to be 

(Pr ) (PrT~ ~ 
F v=prT  ln(Ey +) q-9,24Pr --I 

• ~ \ P r )  

,25 

Method of Numerical Solution. The system of differential equations of the method 
of discrete ordinates, Eqs. (i) and (2), along with the energy equation (3) is solved by 
a finite-difference method. To obtain the discrete analog of Eq. (3) we used the method 
of integration over a control volume [8]. During testing of the program it was established 
that for thermal fluxes typical of the furnaces of tubular ovens an explicit scheme for 
simultaneous integration of the equations of radiative transfer and energy becomes unstable. 
To avoid this instability one applies to the divergence of the radiative fluxes the lower 

relaxation 

divqp = a  div qp + (1 --i a) div @-', 

where the parameter o = 0.i; and n is the number of iterations. 

The well-known SIMPLE algorithm [8] was used to solve the system of differential equa- 
tions (6) describing the field of turbulent flow of combustion products in the furnace cham- 
ber. Simultaneous solution of Eqs. (i), (3) and (6) with the corresponding uniqueness con- 
ditions was accomplished by the method of successive approximations. The above-described 
method of thermal design of furnaces of tubular ovens of box type was used in a group of 
applied programs, written in Fortran IV language for the ES computer. 

Results of the Investigations. We investigated the influence of the width of the furnace 
chamber on external heat transfer in a tubular oven with free burning of the fuel (natural 
gas). The radiative heat transfer was examined in the S 2 approximation by the method of 
discrete ordinates (N o = 4), the radiative spectrum of combustion products was described 
in a six-band model [9], accounting for the bands at 1.5, 2.7, 6.3 and i0 D of the H20 ra- 
diation and at 2.7, 4.3, and 15 D of CO 2. It was shown in [2] that in burning of gaseous 
fuel one can neglect radiative scattering at the individual particles, and therefore the 
calculations were done for $ = 0. The dependence of the thermophysical properties of the 
combustion products on temperature was accounted for. Because there is a plane of symmetry 
only half of the furnace was considered (Fig. i). 

In free burning of the fuel a uniform distribution of the heat transfer regime was 
achieved. This regime is characterized by the fact that the tubular screen is not subject 
to the direct thermal action of the flame, since between the flame and the tubular screen 
there is a region of temperature that is low compared with the flame temperature. Since 
the absorption coefficient of H20 and CO 2 is inversely proportional to temperature, this 
region acts as a thermal screen, blocking radiative heat transfer between the flame and 
the tubular screen. This is confirmed by the results of the computation shown in Figs. 
2 and 3. In the flame region one observes maxima in the distributions of radiative and 
convective heat flux densities to the tubular screen. For a reduced width of furnace 
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Fig. 2. Isotherms (T, K) and stream lines (~/~0, 42 = 0.175 kg/ 
(m.sec)) in a furnace for H = 2 m. 

Fig. 3. Distributions of density of radiant heat flux (i) and con- 
vective heat flux (2) to a tubular screen; the solid lines are for 
H = 1.4; the broken lines are for H = 2 m; and the dot-dash lines 
are for H = 2.6 m. 

TABLE 2. Influence of Furnace 
Width on Total Heat Transfer 

f / ,  m 

1,4 
2,0 
2,6 

-e kw - e  kw 
q p , - - ~  qK' --~-- Texit, K 

36,9 
33,8 
31,1 

2,9 
2,6 
2,4 

1221 
1226 
1230 

chamber for maximum of qr e becomes more pronounced, and there is an increased level of non- 
uniformity of heating of the radiant tubes along the length and of the density of radia- 
tive heat flux to them in the flame region. The explanation is that as H is reduced there 
is less screening influence of the low temperature region on the flame. Here there is also 
a definite part played by the reverse flow zone, which elongates the low-temperature region 
of direct flow away from the tubular screen. For this reason in a wide furnace chamber 
below the flame region the combustion products have a higher temperature compared with a 
narrow furnace. This leads to the so-called inversion phenomenon. It can be seen in Fig. 
3 that all three curves of the distribution of qr e intersect at one point, and below this 
point a wide furnace chamber has higher radiative heat flux density to the tubular screen. 
It should be noted that the location of the inversion point may appreciably affect the de- 
pendence of radiative heat transfer to the tubular screen on the furnace chamber width. 

When the furnace chamber width is reduced the convective heat transfer is intensified, 
which can be explained by an increase of the mean rate of motion of the chimney gases. The 
position of the maximum in the distribution of qK e is influenced both by the aerodynamics 
of the furnace gases and by the temperature field. In a narrow furnace chamber the maximum 
in the distribution of qK e is located closer to the exit (Fig. 3). 

Table 2 shows the computed data on total heat transfer. We obtained the result that 
a narrow furnace achieves a higher total heat transfer to the tubular screen. This result 
contradicts the data obtained in considering radiative heat transfer without computing radi- 
ative-convective interaction and the nature of the motion of the combustion products. With 
a width of furnace chamber of H = 1.4 m the total heat transfer was 16% higher compared 
with the case H = 2.6 m. The fraction of the convective contribution to the heat balance 
of the furnace depends weakly on H, and is 7% on the average. 
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Conclusion. Using the method suggested above we have investigated numerically the 
influence of furnace width on the external heat transfer in the furnace of a tubular oven 
of box type. It has been established that a narrow furnace chamber achieves higher total 
heat transfer to the tubular screen. However, then there is an increase of the degree of 
nonuniformity of heating of the radiative tubes along their length, and therefore the optimal 
width of the furnace chamber should be determined by considering the allowable values of 
temperature of the radiative tubes. 

Notation. x, y) coordinates; g) emissivity, or rate of dissipation of turbulent fluc- 
tuations; r) reflectance; 6) scattering coefficient; =kk) spectral integral over band k of 
the absorption coefficient; Imk) intensity of integrated radiation in the spectral inter- 
val [kk-1, kk] in direction (Pm, Sm); Jkb) Planck function; N o ) number of chosen directions; 
A% k = k k -- kk_ ~) width of a spectral band; N s) number of spectral bands; Cp) specific heat 
at constant pressure; p) density; u, v) components of the velocity vector; T) temperature; 
qpX, qpy) vector components of the radiative heat flux density; q p; ~, p) thermal conduc- 
tivity and viscosity, respectively; ~ef = P + PT; Bf) mass flow rate of fuel; QD H) low heat 
of combustion of fuel; ff ) flame length; a) empirical constant; rf) generalized~transfer 
coefficient; Sf)source term; k) kinetic energy of turbulent fluctuations; P) pressure; 
R ) specific gas constant; Pr, Pr T) molecular and turbulent Prandtl numbers; D) width of 
t~e entrance section; Tu) turbulence level at the entrance; (Tex t - T w) temperature drop 
across the claque; Rf) thermal resistance of the claque; n) interior normal to the boundary; 
V) nabla operator; yp+) dimensionless distance; E = 8.8) empirical constant; K) Karman con- 

e e 1 stant ! qp , qK ) densities of rad'ative and convective heat flux to the tubular screen; 

qpe, qK e) values of qpe, qK e averaged over the length of the radiant tubes; H) furnace width; 
g = 9.81 m/sec2; Texit) temperature of gases at the furnace exit; ~) stream function; L) 
height of the furnace chamber. Subscripts: w) value at the boundary; o) value at the furnace 
entrance; r) value at distance Yr from the boundary; t) value of the characteristic of turbu- 
lence. 
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